

Master's Thesis

3D Shape Completion from Sparse Point Clouds

Christian Diller

26th July 2019

Motivation

LiDAR Scanning

- Sensing the environment
- Sparse point measurements
- Only partially visible objects

Laser Scanning

- Precise point locations
- Scanline approach
- Requires controlled

environment

Problem Statement

Motivation D

Sparse and Partial Point Clouds

Dense Surface Meshes

3D Shape Completion from Sparse Point Clouds

- Background
- Data Generation
- Network Architecture

• Evaluation Results

Background

PointNet

- Classification and Segmentation
- Operating directly on unstructured point clouds
- Uses symmetric max pooling operation

32.C. R. Qi, H. Su, K. Mo, and L. J. Guibas. "PointNet - Deep Learning on Point Sets for 3D Classification and Segmentation." In: CVPR (2017), pp. 77–85.

11

PointNet++

- Improvements by stacking multiple PointNets
- Captures local point neighborhoods

49.C. R. Qi, L. Yi, H. Su, and L. J. Guibas. "PointNet++ - Deep Hierarchical Feature Learning on Point Sets in a Metric Space." In: NIPS (2017).

3D Encoder Predictor CNN

- Learns shape completion with autoencoder-like architecture
- Operates on regular voxel grids

A. Dai, C. R. Qi, and M. Nießner. "Shape Completion Using 3D-Encoder-Predictor CNNs and Shape Synthesis." In: CVPR (2017), pp. 6545–6554.¹²

Method Overview

Input:

- Sparse and Partial Point Clouds
- Unstructured list of xyz coordinates in 3D space

Output:

- Dense Surface Meshes
 - Vertices and faces
- Unsigned Distance Field as intermediary representation

Data Generation

ModelNet40

- High-Quality 3D CAD models
- 40 object classes
- 9843 train and 2468 test models

66.Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao. "3D ShapeNets - A deep representation for volumetric shapes." In: CVPR (2015), pp. 1912–1920.

- 1. Normalization to unit cube
- 2. Trajectory sampling with jitter
- 3. Virtual rendering from generated cameras

Augmentations: 6 trajectories and up to 6 rotations per object

Virtual Rendering

- 1. Virtual rendering from each camera
- 2. Backprojecting into common 3D space
- 3. Subsampling to get exactly 2048 points

Data Formats

- Input Data
 - Partial Point Clouds: 2048 points
 - Signed Distance Fields: 32³ voxels
- Target Data
 - Unsigned Distance Fields: 32³ voxels
 - Complete Point Cloud: 4096 points

2D slice through a distance field volume

Network Architecture

Distance Field Generation

Network Architecture

- Ingesting 3D point cloud with 1D convolutional layers
- Symmetric Max Pooling layer
- Fully Connected layers on latent vector
- Reshape and 3D Transpose Convolutions for volume generation

Loss on Distance Fields

• I₂ Loss: Lacking Robustness

$$d_{l_2}(x, y) = \frac{1}{n} \sum_{i} (x_i - y_i)^2$$

• I₁ Loss: Lacking Stability

$$d_{l_1}(x, y) = \frac{1}{n} \sum_i |x_i - y_i|$$

• Huber (smooth l₁) Loss

$$d_{huber}(x,y) = \frac{1}{n} \sum_{i} z_i, \quad \text{with} \quad z_i = \begin{cases} \frac{1}{2} (x_i - y_i)^2, & |x_i - y_i| < 1\\ |x_i - y_i|, & \text{otherwise} \end{cases}$$

Network Architecture

ТШ

Loss on Distance Fields

- Voxels far away contribute less to shape but influence loss more
- Truncation removes high-value voxels from volume
- Additional log scaling emphasizes changes in surface-near voxels

Evaluation: Loss on Distance Fields

Rotations	Truncation and Log Scaling	I ₁ loss	Truncation and Log Scaling	I ₁ loss
1	No	0.016105	Yes	0.000881
3	No	0.016066	Yes	0.000996
6	No	0.016103	Yes	0.001123

Evaluating how truncation and logarithmic scaling impacts the resulting I_1 distance

Network Architecture

Design Studies

• Point Cloud Generation

Evaluation: Point Cloud Generation

Rotations	Accuracy	Completeness
1	82.2%	79.2%
3	87.2%	69.3%
6	87.8%	67.1%

Comparing accuracy and completeness across different number of rotational augmentations during training

- Accuracy: Percentage of points with distance to their ground-truth correspondence above a threshold
- Completeness: Percentage of points with distance to their prediction correspondence above a threshold

Design Studies

• Hybrid Decoder

Evaluation: Hybrid Decoder

Comparing the impact of using both distance field and point cloud decoders vs. only one of them

TLM

Results

Design Studies

• Classification Pseudo-Loss

Evaluation: Classification

Decoder	Classification Branch	I ₁ loss	Classification Branch	I ₁ loss
Distance Field	No	0.000881	Yes	0.001272
Point Cloud	No	82.2% / 79.2%	Yes	75.8% / 65.1%

Evaluating how adding a classification branch impacts prediction performance

Design Studies

- Encoders
 - PointNet
 - PointNet++

• 3D-EPN

Evaluation: Encoders

Encoder	I ₁ loss (1 rotation)	I ₁ loss (3 rotations)	I ₁ loss (6 rotations)
PointNet	0.001145	0.000854	0.001212
PointNet++	0.001126	-	-
Point Cloud	0.000881	0.000996	0.001123
3D-EPN	0.00967	0.000907	0.001150

Comparing the impact of using different encoders on completion performance

Results 🕕 🎹

Evaluation: Overall

Encoder	Rotations	Classification	Truncation & Log	l_1 Distance
Point Cloud	1			0.016105
Point Cloud	1		\checkmark	0.000881
Point Cloud	1	\checkmark	\checkmark	0.001272
PointNet	1		\checkmark	0.001145
PointNet++	1		\checkmark	0.001126
3D-EPN	1		\checkmark	0.000967
Point Cloud	3			0.016066
Point Cloud	3		\checkmark	0.000996
PointNet	3		\checkmark	0.000854
3D-EPN	3		\checkmark	0.000907
Point Cloud	6			0.016103
Point Cloud	6		\checkmark	0.001123
PointNet	6		\checkmark	0.001212
3D-EPN	6		\checkmark	0.001150

Qualitative: Mesh

Qualitative: Point Cloud

Limitations

Missing geometry for fine structures

Limitations

Fused geometry for fine structures

Limitations

Missing geometry for areas with little information

Conclusion

- Taking sparse and partial point clouds as input
- Data-driven shape completion using an autoencoder-like architecture
- Outputting dense surface mesh

3D Shape Completion from Sparse Point Clouds

Thank you

ТΠ