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Figure 1. We propose a novel generative approach to model long-term future human behavior by jointly forecasting a sequence of coarse
action labels and their concrete realizations as 3D body poses. For broad applicability, our autoregressive method only requires weak
supervision and past observations in the form of 2D RGB video data, together with a database of uncorrelated 3D human poses.

Abstract

We present a generative approach to forecast long-term
future human behavior in 3D, requiring only weak super-
vision from readily available 2D human action data. This
is a fundamental task enabling many downstream applica-
tions. The required ground-truth data is hard to capture in
3D (mocap suits, expensive setups) but easy to acquire in
2D (simple RGB cameras). Thus, we design our method
to only require 2D RGB data while being able to generate
3D human motion sequences. We use a differentiable 2D
projection scheme in an autoregressive manner for weak
supervision, and an adversarial loss for 3D regularization.
Our method predicts long and complex behavior sequences
(e.g. cooking, assembly) consisting of multiple sub-actions.
We tackle this in a semantically hierarchical manner, jointly
predicting high-level coarse action labels together with their
low-level fine-grained realizations as characteristic 3D hu-
man poses. We observe that these two action representations
are coupled in nature, and joint prediction benefits both ac-
tion and pose forecasting. Our experiments demonstrate
the complementary nature of joint action and 3D pose pre-
diction: our joint approach outperforms each task treated
individually, enables robust longer-term sequence prediction,
and outperforms alternative approaches to forecast actions
and characteristic 3D poses.

1. Introduction

Predicting future human behavior is fundamental to ma-
chine intelligence, with many applications in content cre-
ation, robotics, mixed reality, and more. For instance, a
monitoring system might issue early warnings of potentially
dangerous behaviour, and a robotic assistant can use fore-
casting to place tools at the right place and time they will
be needed in the future. Consider the specific scenario of
an assembly line monitoring system deployed to issue early
warnings of behavior that could be harmful in the near future:
The system needs to have a long-term understanding of the
future, enabling it to forecast multiple action steps ahead so
that it can act in time before a harmful action occurs. How-
ever, simply understanding the next action steps on a high
level is not sufficient: it must also reason about where the
action will occur. Actions such as “grab a tool” are likely
harmless when performed in a toolbox; they become danger-
ous when done next to an active table saw or moving robot
arm. The monitoring system thus also needs to be able to
reason about spatial relations in 3D — for both the location
and body pose of involved humans.

To support these types of applications, we must address
two tasks: 1) forecasting long-term action sequences, and 2)
predicting future 3D human poses. Prior work has focused on
each of these tasks separately: activity forecasting predicts



future action labels without considering the 3D poses [33,
35, 36, 49, 51, 71], while 3D pose forecasting focuses on
fixed frame rate sequence prediction limited to single actions
in short-term time frames without considering longer-term
action sequences [31, 61, 62, 93, 96].

We propose that these two tasks are coupled in nature:
predicting action labels with realized 3D poses helps to
encourage richer feature learning and can materialize sub-
category level differences in actions for predicting future
activities, and grounding 3D poses with actions provides
global structure for longer-term forecasting.

Leveraging this insight, we design a method that takes
in a sequence of recent RGB image observations and their
action labels, and jointly predicts a sequence of future 3D
characteristic poses and action labels (Fig. 1). In our design,
we had to address two significant research challenges: 1)
forecasting 3D poses from 2D images without any paired 3D
training data, and 2) forecasting long sequences of actions
comprising several discrete action steps.

The first challenge arises from limited training data. It
would be ideal to have a dataset with ground truth 3D pose
and action annotations for complex sequences of actions.
Unfortunately, no such dataset exists. There are RGB video
datasets with tracked 3D poses for limited types of actions
(e.g., walking or waving); and there are video datasets with
action labels for complex sequences of actions (e.g., cook-
ing or assembly). However, there is no single dataset that
has both types of annotations, and capturing one would be
difficult due to the challenges of setting up 3D pose track-
ers in settings where people typically perform complex se-
quences of actions (e.g., cooking in a kitchen). Instead, we
have to learn to use 2D video observations for 3D pose and
action label forecasting without paired data. We achieve
this by weakly supervising our pose forecasting in 2D us-
ing readily available 2D action datasets [8, 72] and formu-
late an adversarial loss encouraging likely 3D characteristic
poses with respect to a distribution learned from 3D pose
datasets [42, 60, 82]. Crucially, this does not require any
correspondence between the 2D video and 3D pose data.

The second challenge arises from the difficulties of pre-
dicting long sequences of discrete events. One option would
be to train a model to output a multi-step sequence of ac-
tions and poses all at once — however, this is impossible
given the exponential growth of multi-step sequences and
the limited amount of available training data. Another op-
tion would be to train a model that predicts the next future
poses and actions at fixed time points in the future (e.g., 1s
in advance) and then recurrently make long-term predictions
— however, this time-based forecasting approach produces
sequences that tend to “drift” over the long-term, since the in-
termediate poses at fixed time steps are usually “in between”
semantically meaningful actions and thus do not provide a
distinctive input representation for the next prediction. To

address this issue, we train our autoregressive approach to
iteratively generate the next discrete action label along with
the 3D characteristic pose for that action. A 3D characteris-
tic pose [22] is the set of 3D joint positions corresponding
to the most distinctive moment a semantic action is being
performed (e.g., when a hand grasps an object, when two ob-
jects are first brought together, etc.). By training our method
to produce these poses as intermediate outputs (and inputs
to the next step), we are able to generate more semantically
plausible forecasts over longer action sequences.

Our experiments with two RGB video datasets demon-
strate that our approach for joint prediction of action be-
haviors and 3D poses outperforms state-of-the-art methods
applied separately to each task. Additionally, we find that
predicting actions and their 3D characteristic poses enables
more robust autoregressive prediction for longer-term fore-
casting. Overall, our contributions are:

* The first method to learn forecasting of future 3D poses
from datasets with only 2D RGB video and action label
data (i.e., without any paired 3D data).

* The first method to forecast future 3D poses jointly with
action labels from commonly available video input.

* The first method to forecast future characteristic 3D poses
and action labels for long-term and complex behaviors.

2. Related Work

3D Human Pose Forecasting. Forecasting 3D human
poses has been studied in many previous works and is com-
monly formulated as a 3D sequential motion prediction task,
taking an input 3D sequence of poses and generating an
output 3D sequence of poses. For short-term future pre-
diction (up to =~ 1 second), RNN-based approaches have
achieved impressive performance [1, 16, 30, 37, 38, 44,
64, 69, 90]. As RNNs tend to struggle to capture longer-
term dependencies with a fixed-size history, graph-based
[17, 18, 20, 53, 55, 56, 61, 77, 93, 98] and attention-based
[2, 11,62, 65, 83] approaches have been proposed to encode
temporal history. Some methods also explored the appli-
cability of temporal convolutions [54, 66] and MLP-only
architectures [10, 39] to the task of human motion forecast-
ing. Additionally, various approaches have been proposed to
model future human motion stochastically to produce diverse
future sequence predictions, either with adversarial GAN
formulations [7, 52], conditional variational autoencoders
(VAEs) [3, 9, 12, 59, 63, 74, 87, 93, 95], or diverse sam-
pling [21, 96]. More recently, diffusion methods [78, 79]
have been used for human motion generation and forecast-
ing [6, 19, 46, 84, 85, 94, 97, 99]. All of these methods
require 3D ground truth sequences for training, which lim-
its applicability to common scenarios where 3D inputs and
ground-truth are not available. In contrast, ours requires
only 2D training data for the action sequences, which is far
more plentiful and easier to obtain. We are able to generate
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Figure 2. Our approach takes as input a sequence of RGB images, from which 2D poses are extracted, as well as their corresponding action
label and initial set of objects. Each input is encoded into a joint latent space to jointly predict the next action label and characteristic 3D
pose. While action labels are directly supervised, the 3D pose decoder is trained to match the next 2D action pose using differentiable
projection, and an adversarial 3D loss encourages valid 3D pose prediction.

valid 3D poses by leveraging an adversarial loss formulation,
operating on a database of uncorrelated 3D poses.

Human Action Forecasting. Action forecasting has been
studied by many approaches to predict future actions from
a sequence of observed actions [25, 26, 29, 48] or directly
from an input video sequence [28, 32, 34, 35, 67,75, 76, 76].
Various methods have been developed to learn effective
representations, including Hidden Markov Models [51],
RNNSs [25-28, 32, 43, 76, 92], transformer-based networks
[35, 36, 73], and self-supervised feature learning [41, 86].
There are approaches that focus on the short-term future
[29, 32, 34, 35, 67, 73, 75, 76] or on longer-term actions
[25, 26, 28, 29, 32, 34-36, 48, 67, 75, 76, 76]. Such method
focus on characterizing anticipation with action labels only,
while we aim to predict a richer characterization of the an-
ticipated future by leveraging characteristic 3D poses, repre-
sentative of future action goals in a sequence of action-pose
predictions. Forecasting actions alongside human poses in
2D only has been studied in a few works, for 2D hand place-
ment [57] or full-body 2D human poses at most 1 second into
the future [100]. Our approach addresses the benefits of 3D
reasoning in human motion forecasting, without requiring
full 3D sequences for supervision.

Goal-Driven Future Prediction. Goal-driven forecasting
has previously been explored beyond action label forecast-
ing, and has been leveraged to predict goal locations for
future human walking trajectories [14] and for future video
sequences by predicting keyframes [5, 45, 70, 80]. Diller
et al. [22] introduced the task of forecasting characteris-
tic 3D poses, salient keyframe poses representing the next
action. These goal-based poses are more semantically mean-
ingful and consistent across different action sequences than
time-based ones, and thus are better suited for long-term
forecasting. We build upon these ideas by introducing a new
goal-driven method for joint action anticipation and charac-
teristic 3D pose forecasting in an auto-regressive system that
can predict complex, long-term behavior sequences.

3. Method Overview

Our method aims to learn to jointly model future human
actions along with the characteristic 3D poses representative
of those actions. From a sequence of RGB image obser-
vations of a person performing a series of actions and the
corresponding action labels, we predict a sequence of future
action labels and 3D poses characteristic of these actions.
This enables joint reasoning of not only global semantic
behavior but also the physical manifestation thereof.

In the absence of 3D pose data of complex human ac-
tions, we weakly supervise forecasted 3D poses to align to
future poses in 2D, and constrain the poses to be valid in
3D using an adversarial loss with a database of 3D poses.
This does not require any correspondence between 3D pose
data and 2D video, enabling action sequence supervision
on commonly available 2D human action data together with
carefully captured but unrelated human poses in 3D.

An overview of this approach is shown in Fig. 2. For an
input sequence S = {(I;, a;,0;)} of N RGB images I; with
corresponding actions a; and initially involved objects o;, we
aim to predict the future M actions {ay, } that will be taken
along with their characteristic poses in 3D {Y} }. We define
the human pose as a collection of J body joints at salient
locations, so each output pose Yy is predicted as a set of J 3D
coordinates. We first extract information about the observed
2D pose movement by detecting 2D poses { X }, each with
J 2D joints, with a state-of-the-art 2D pose estimator that
seamlessly integrates into our pipeline in a pre-trained and
frozen form.

Next, we encode this information along with previously
observed action and object labels to predict the next future
action label a;, and characteristic 3D pose Y. We can then
forecast a future sequence by autoregressively predicting
a series, considering the 2D projections of the previously
predicted 3D poses along with previously predicted actions
as input to a new prediction.



4. Joint Forecasting of Actions and Character-
istic 3D Poses

Our network takes as input the previous 2D observations
{X;} extracted from the {I;} images, as well as action and
object labels {a;} and {0;}. Since we only predict action
labels, object labels are given from the objects seen at the
beginning of the sequence, and subsequently re-used for the
entire sequence. Each of these are encoded in parallel with
three separate encoders; the actions and objects with MLPs
while the poses are projected into latent space with a single
linear layer and then processed with a stack of three residual
blocks. These encoded features are then all concatenated
together in latent space, and processed jointly with an MLP
to produce a common latent code z. Finally, we decode
both poses and actions in parallel based on z using an MLP
decoder each, yielding the next action label class as a vector
Gj € RNe and 3D characteristic pose f/k e RV*3 with N,
the number of action classes. For a more detailed architecture
specification, we refer to the appendix.

We jointly learn future action labels and characteristic 3D
poses by supervising a and Y} to match the observed future
2D video, and constrain Y}, to form a valid 3D pose by an
adversarial loss, optimizing for the overall loss:

L= Aaction‘caction"|')\pl)seQd‘Cpose2d"')\adv?)d‘cad'u3d7 (1)

where L,.ion, denotes the action loss, as described in
Sec. 4.1, L0524 and L, 44,34 constraining the predicted pose,
as described in Sec. 4.2, and the \ weighting each loss.

4.1. Action Forecasting

Predicted future actions are decoded from the latent code
z by an MLP decoder to predict the action class ay, super-
vised by cross entropy with the ground truth future action:
‘Caction = CE(&k:a a%t)~

4.2. Characteristic Pose Forecasting

Our goal is to forecast complex action behavior not only in
terms of action labels, but also manifested as a sequence
of characteristic poses in 3D. Since we only have 2D pose
annotations available, we first constrain these poses to rep-
resent future actions in 2D and make use of an adversarial
regularization in 3D. This does not require any correspon-
dence between 2D and 3D data, only a collection of valid
3D poses, which are readily available.

Differentiable 2D Projection

Our generator network predicts the next characteristic action
pose Yy as a set of 3D joints. To constrain Y} based on
the target future 2D pose X&' extracted from the ground
truth future image, we differentiably project Y}, into the 2D

image with given camera parameter intrinsic X and extrinsic
rotation and translation R, ¢:

X = K(RY; +1t) )

Since we learn from third-person video with a fixed cam-
era, we can use the same camera parameters for all sequences
used for training. We can then define the 2D pose loss as the
mean squared error between the projected pose prediction
and the ground truth:

£p0362d = Hth - X’CH% (3)

Note that we only predict the .J joints that have been
observed in the video data (excluding any joints that remain
occluded in the observed video data), so this loss can be
applied to all predicted joints.

Adversarial 3D Pose Regularization

While the action and pose prediction losses provide effec-
tive predictions when considered in the 2D projections, the
ffk remain underconstrained in 3D and thus tend to exhibit
large distortions and implausible bone lengths and angles,
when trained with only 2D supervision. We thus constrain
the predicted poses to form valid 3D poses by formulating
an adversarial 3D loss from a critic network which that is
simultaneously trained to distinguish predicted poses from a
database of real 3D skeleton samples. Note that there is no
correspondence between these skeletons and the 2D poses
extracted from the action video sequences — any database of
3D skeletons can be used. We can thus train our approach
with an entirely uncorrelated 3D pose dataset without requir-
ing 3D pose annotation to action video.

We then formulate £, 4,34 as a Wasserstein loss [4], train-
ing the critic network in an alternating fashion with the
generator. This enables effective forecasting of future 3D
characteristic poses for predicted future action labels, with-
out requiring any 3D observations as input.

In order to enable the critic network to learn effectively
about likely intrinsic pose constraints (e.g., lengths, kine-
matic chains, or valid joint angles), the critic takes as input
not only the 3D joint locations of Y. but also their kinematic
statistics as a matrix U, following [88, 89].

U encodes joint angles and bone lengths as ¥ = BT B,
where B = (b1, b, ..., b) is a matrix with columns b; =
Jx — 71 representing the vectors between each joint j; and j;.
U then contains bone lengths {? on its diagonal, and angular
representations on the off-diagonal entries.

4.3. Sequence Prediction

In order to forecast longer-term future behavior, our 3D
pose predictions enable a natural autoregressive sequence
prediction by taking the predictions X, G, at time step ¢ as



MPII Cooking II IKEA ASM
2d 3d Action Accuracy 2d 3d Action Accuracy
Approach MPIJPE [px] | | Quality T || top-1 1 ‘ top-3 1 || MPJPE [px] ] | Quality T || top-1 1 ‘ top-3 1
Zero Velocity 118 - - - 74 - - -
Train Average 166 - - - 91 - - -
AVT [35] RGB - - 19% 42% - - 22% 49%
AVT [35] RGB+Skeleton - - 20% 40% - - 23% 47%
FUTR [36] RGB - - 27% 48% - - 19% 45%
FUTR [36] RGB+Skeleton - - 27% 49% - - 20% 46%
RepNet [88] + DLow [96] 89 0.70 - - 51 0.30 - -
RepNet [88] + GSPS [63] 75 0.57 - - 55 0.11 - -
RepNet [88] + STARS [93] 70 0.62 - - 54 0.27 - -
[ Joint 2D Pose & Action [100] | 55 [ - T 21% | 4% ] 44 [ - T 22% | 46% |
[Ours [ 50 | 055 | 29% | 51% | 40 | 031 | 29% | 50% |

Table 1. Quantitative comparison with state-of-the-art action label and 3D pose forecasting. Our joint approach enables more accurate future
action and pose predictions, compared to approaching both tasks separately, and outperforms joint action & 2D pose forecasting.

part of the input for time step ¢ + 1. We can thus predict
a sequence of M future action labels and characteristic 3D
poses; we use M = 10 for MPII Cooking IT [72] and M = 5
for IKEA-ASM [8], respectively.

4.4. Training Details

We train our approach for the J = 9 joints commonly seen
across the input observed video data, characterizing the up-
per body in MPII Cooking IT [72] and IKEA-ASM [§].

Additionally, we use loss weights \gcrion = 1€9, Apose =
1, and A\y4y3¢ = 1, empirically chosen to numerically bal-
ance each individual loss with the others.

We train our approach on a single NVIDIA GeForce RTX
2080TI for ~ 12 hours until convergence. We use an ADAM
optimizer with batch size 4096, weight decay 0.001, and
a constant learning rate of 0.0001 for both generator and
discriminator.

4.5. Datasets

We train and evaluate our approach on two datasets: MPII
Cooking II [72] and IKEA-ASM [8]. Both datasets contain
sequences of human actors performing complex, unscripted
actions, and provide annotations of fine-grained sub-action
steps. MPII Cooking II [72] is an action recognition dataset
with 272 complex cooking sequences, each with an aver-
age of 35 annotated sub-actions. IKEA-ASM contains 370
sequences of actors assembling IKEA furniture, with an
average of 15 annotated sub-actions.

In both datasets, each action sequence has been filmed
from a fixed camera setup; the third-person point of view
enables extraction of 2D poses with an off-the-shelf 2D pose
estimator. We use OpenPose [13] in our experiments and
note that our approach is agnostic to the concrete method
of 2D pose detection. We provide more in-depth discussion
and additional experiments in the appendix.

We consider the 9 upper-body joints of the OpenPose
skeletons, as the other joints are almost always occluded
in the video observations, and remove global translation by

centering each 2D pose at the neck joint.

Characteristic poses, in contrast to an arbitrary pose
within a labeled action range, are the most representative
pose of that action, and are annotated for all sub-actions in
each sequence as the most articulated pose of that sub-action,
following the annotation protocol of [22]. All annotations
were performed by the authors within 5 days, yielding a total
of ~18,000 characteristic poses (12,000 for MPII Cooking
II and /6,000 for IKEA-ASM). These poses are indicative
of the action they represent as demonstrated in Tab. 2: Using
such poses significantly improves performance, validating
our annotation protocol.

For the 3D adversarial loss, we use ~800,000 human
poses from popular 3D pose datasets: Human3.6m [42],
AMASS [60], and GRAB [82]. Note that none of these 3D
poses have any correspondence with the 2D posed actions
from the MPII Cooking II dataset, instead depicting various
human skeletons in natural and diverse poses.

5. Results

We evaluate sequence forecasting of action labels and char-
acteristic 3D poses on the MPI Cooking II [72] and IKEA-
ASM [8] datasets, and 3D pose quality by comparing to our
database of high-fidelity 3D poses.

5.1. Evaluation Metrics

2D Pose Error. Since we only have 2D ground-truth data
available for complex action sequences, we first project pre-
dicted 3D poses back into 2D, and evaluate the 2D mean
per-joint position error (MPJPE) [42], in comparison with
2D poses extracted from ground-truth future frames using
[13]: Emprpe = 77 Z]Ail [|[ X — X,

3D Pose Quality. In the absence of annotated ground truth
3D poses for the action video sequences, we measure the
quality of predicted 3D poses as how distinguishable they
are in comparison to a set of real 3D poses. We follow
[3] and evaluate quality by training a binary classifier on
50,000 human poses generated at different training steps
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Figure 3. Action accuracy over time. Our joint action-characteristic
pose forecasting enables more robust autoregressive action fore-
casting than action prediction without considering pose.

(representing examples of unrealistic 3D poses) and 50,000
real 3D pose samples. For classification accuracy a of this
classifier, quality is measured as 1 — a, with a quality of 1
indicating full indistinguishability from real poses. We refer
to the appendix for more details on this quality metric.
Action Accuracy. We report the action accuracy of the pre-
dicted sequences, as the mean over all sequences in the test
set. We evaluate the top-n accuracy based on whether the
ground truth action is among the n highest scoring predic-
tions, forn = 1 and n = 3.

5.2. Comparison to Human Pose Forecasting

Tab. 1 compares our method to state-of-the-art 3D pose fore-
casting methods DLow [96], GSPS [63], and STARS [93].
These methods expect sequences of observed 3D human
poses as input; we thus first apply a state-of-the-art weakly
supervised 3D pose estimator [88] on our 2D input poses,
producing inputs and supervision in 3D. This method esti-
mates 3D poses using an adversarial formulation, requiring a
database of 3D poses not correlated with the 2D pose inputs.
To ensure a fair comparison, this 3D pose database is exactly
the same as the one our method uses.

We chose the 3D pose estimator of [88] since its weakly
supervised formulation is most comparable to our approach.
An additional comparison to a fully supervised approach for
3D pose lifting (SPIN [50]) is provided in the appendix.

We then train the 3D pose prediction methods from
scratch on this generated data, using their original parameter
settings. Each method takes as input a pose history of M
poses and outputs a sequence of M poses, analogous to our
setup where each pose is a characteristic pose correspond-
ing to an action step (M = 10 for MPII Cooking II and
M = 5 for IKEA-ASM). Our approach to lift 2D to future
3D poses and actions in an end-to-end fashion enables more
effective pose forecasting than these state-of-the-art 3D pose
forecasting approaches on both datasets.

In addition, we compare to the joint 2D action and pose
forecasting approach of Zhu et al. [100]. Our approach

of forecasting long-term sequences of 3D poses alongside
actions is able to outperform their 2D MPJPE pose prediction
and action accuracy performance, due to improved spatial
reasoning when forecasting 3D poses.

Statistical 2D Baselines. We additionally compare with
two statistical baselines in 2D, following [22]: the average
target train pose, and a zero-velocity baseline which was
introduced by Martinez et al. [64] as competitive with state
of the art. We outperform both baselines, indicating that our
method learns a strong action pose representation.

5.3. Comparison to Action Label Forecasting

We compare the action accuracy of our joint action-pose
forecasting to AVT [35] and FUTR [36], two state-of-the-art
action anticipation methods, in Tab. 1. We train and evaluate
both AVT and FUTR on input RGB frames and their action
and object labels, equal to our training setup, and use their
original training settings initialized with a pre-trained vision
transformer [23] for AVT and extracted I3D features [15]
from our datasets for FUTR. Additionally, as we consider
extracted 2D poses from the input RGB images, we also eval-
uate a variant that is trained and evaluated on RGB images
overlaid with 2D poses (+Skeleton). Our approach outper-
forms these baselines in both scenarios, by jointly predicting
future actions and characteristic 3D poses.

5.4. Ablation Studies

What is the effect of pose forecasting on long-term action
understanding? Tab. 3 shows that there is a notable im-
provement in action accuracy between training only with an
action loss vs. training action and 2D pose loss jointly. This
becomes more apparent when training action only vs action
and full pose prediction (2D and 3D losses). In addition,
Fig. 3 shows the correspondence between autoregressive pre-
diction length and action accuracy: jointly forecasting poses
and actions is enables more robust autoregressive forecasting
over time. We conclude that pose forecasting is beneficial
for long-term action understanding.

How does action forecasting affect pose prediction per-
formance? Tab. 3 demonstrates that pose forecasting trained
jointly with action prediction is complementary and enables
more accurate pose prediction.

Poses 2D 3D Action Accuracy

Train Test MPJPE [px] | || Quality T | top-11 || top-3 1
Uncoupled Uncoupled 75 0.29 28% 48%
Middle Middle 58 0.45 26% 43%
Random Random 67 0.37 22% 42%
Characteristic | Characteristic 50 0.55 29% 51%

Table 2. Ablation on pose forecasting on MPII Cooking II [72]. Our
characteristic pose representation maximizes MPJPE and action
performance: We consider pose prediction following state-of-the-
art pose forecasting as decoupled from actions (uncoupled), as well
as poses coupled to actions but in the middle of an action range,
or at a random time therein, and our characteristic pose prediction.
The same pose type is used for both train and evaluation.



MPII Cooking II IKEA ASM
Losses During Training 2D 3D Action Accuracy 2D 3D Action Accuracy
Action { 2D Proj. { 3D Adv. || MPJPE [px] | | Quality 1 || top-11 { top-3 1 || MPJPE [px] | | Quality 1 || top-1 7T { top-3 1
v X X - - 21% 41% - - 24% 45%
v v X 62 0.10 26% 49% 46 0.05 27% 49%
X v X 54 0.21 - - 44 0.09 - -
X v v 58 0.53 - - 43 0.29 - -
| v [ v [ v “ 50 [ 0.55 “ 29% [ 51% “ 40 [ 0.31 “ 29% [ 50% |

Table 3. Ablation on the effect of the action, 2D projection, and 3D adversarial losses. Combining all together for joint forecasting enables

complementary learning to produce the best performance.

What is the effect of characteristic pose forecasting?
Since state-of-the-art pose forecasting focuses on fixed frame
rate predictions independent of actions, we compare with
such joint forecasting of action and pose where predicted
poses are sampled at equally spaced points in time in Tab. 2
(uncoupled). Additionally, we consider alternative poses to
forecast for each action rather than a characteristic 3D pose
(middle of the annotated action range, and randomly selected
within the action range). We keep the same pose representa-
tion for training and testing (i.e., evaluate on middle poses
when trained on them, etc.), for a fair comparison. We ob-
serve the best performance when forecasting characteristic
3D poses along with action labels, showing their usefulness
for forecasting long sequences of 3D poses and actions.

5.5. Qualitative Results

Qualitative evaluations for the predicted poses are shown in
Fig. 5 on data from MPII Cooking II [72] and in Fig. 4 on
data from IKEA-ASM [8]. We compare our approach with

state-of-the-art 3D pose forecasting of DLow [96], GSPS
[63], and STARS [93]. For each method, we show a 3D body
mesh in addition to the predicted 3D pose joints, to more
comprehensively show the 3D structure of the forecasting
results; we obtain body meshes by fitting SMPL [58] to each
methods’ predicted 3D body joints.

As there is no 3D ground truth available, we show the
camera perspective with background for context as well
as without background for a 3D pose only version. The
two views demonstrate the fit to the ground truth 2D along
with the quality of the 3D pose, respectively. Our approach
leads to poses that better follow the ground-truth action
poses in 2D compared to both previous methods while still
maintaining a valid pose structure in 3D. Notably, this is
true for both datasets, as our approach effectively forecasts
the different data characteristics of both cooking as well as
furniture assembly. In particular, our joint action-3D pose
forecasting enables more accurate forecasting with diverse
and accurate 3D pose structures.
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Figure 4. Qualitative comparison between DLow [96], GSPS [63], STARS [93], and our method on IKEA-ASM [8] data. For each method,
we show the 3D predicted pose projected into the 2D target view, without background (small) and with background for context (full size).
Our joint reasoning captures the individual characteristic action poses more faithfully while producing spatially plausible 3D poses.
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5.6. Limitations

While we have demonstrated the potential of joint action
and 3D pose forecasting, several limitations remain. For
instance, our method leverages a separate 2D pose extraction
as input to training, while an end-to-end formulation could
potentially better leverage other useful signal in the input
frames. Additionally, a more holistic body representation
than pose joints would be important for finer-grained inter-
actions that involve reasoning over small limbs (e.g., hands)
and body surface contact.

Input

2

“dry” “throw in garbage” “take”

6. Conclusion

In this paper, we proposed to forecast future human behavior
by jointly predicting future actions alongside characteris-
tic 3D poses. We do not require any 3D annotated action
sequences, or 3D input data; instead, we learn complex ac-
tion sequences from 2D action video data, and regularize
predicted poses with an adversarial formulation against un-
correlated 3D pose data. Experiments demonstrate that our
joint forecasting enables complementary feature learning,
outperforming each individual task considered separately.
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for context (full size). By considering both 3D pose and action forecasting together, we more effectively forecast the longer-term behavior.
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Appendix

We show in this appendix additional qualitative and quantita-
tive results (Sec. A and Sec. B), demonstrate the ability of our
method to generalize to multi-actor scenarios (Sec. C), ver-
ify our method’s robustness to 2D detection results (Sec. D),
detail our baseline evaluation protocol (Sec. E), elaborate
on the 3D quality metric (Sec. F), show the architecture
used in our approach (Sec. G), and provide additional details
regarding the data (Sec. H).

A. Additional Qualitative Results

Fig. 6 shows additional qualitative results of our method, on
both MPII Cooking 2 [72] (left column) and IKEA-ASM [§]
(right column), as compared to pose baselines DLow [96],
GSPS [63], and STARS [93].

B. Additional Quantitative Results
B.1. Characteristic Poses

Analogous to Tab. 2 in the main paper, Tab. 6 shows an ab-
lation on pose timings and compares our approach of using
characteristic poses to poses taken at regular time intervals
(“uncoupled”) as well as in the middle or at a random time
of an action, on IKEA-ASM [8] data. To further illustrate
this point, Tab. 4 shows an additional ablation with poses at
random points in the sequence, but at most 1s from the clos-
est characteristic pose. This already improves performance
compared to other approaches while still being outperformed
by directly using characteristic poses.

B.2. Input Noise Ablation

Tab. 5 shows the effect using a noise vector as additional
input to our method. It encourages more diversity in predic-
tions, which benefits pose and action forecasting.

2D 3D Action Accuracy

Poses MPIPE [px] | | Quality 1 | top-11 [ top-3 1
Uncoupled 75 0.29 28% 48%
Middle 58 0.45 26% 43%
Random 67 0.37 22% 42%
Centered on Char. Poses 69 0.33 28% 50%
Characteristic 50 0.55 29% 51%

Table 4. Ablation on pose forecasting on MPII Cooking II [72].
We consider pose prediction following state-of-the-art pose fore-
casting as decoupled from actions (uncoupled), as well as poses
coupled to actions in various fashions: middle (the middle pose of
an action range), random (a random pose of the action), random
but at most 1s from the closest characteristic pose (centered), and
our characteristic pose prediction.
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B.3. Input Objects Ablation

Object inputs slightly improve results (Tab. 5), due to added
context for broad actions like “add,” e.g.“add ingredient” vs.
“add water to pot.”.

C. Multi-Actor Interaction Scenario

In addition to our experiments with single human actors in
the main paper, we show here that our approach is able to
generalize to multi-actor scenarios, with minor modifications.
We show this in Tab. 7 with additional dataset TICaM [47]
where driver and passenger are interacting in an in-car driv-
ing scenario (actions include “talking”, various handoffs).
Our modifications are: (1) Additional encoder and decoder
for the second person (2) Interaction pooling introduced in
Social GAN [40]. Our modified method outperforms simple
combinations of previous works, with and without interac-
tion modelling, demonstrating the wide applicability of our
method.

D. 2D Input Pose Quality

In Fig. 8, we replace OpenPose with AlphaPose [24] and
Detectron2 [91], both only slightly changing the final results,
indicating that our method does not depend on a specific
2D pose detector. We also experiment with added random
noise to OpenPose: our method remains relatively robust.
The coupled changes in pose and action accuracy further
demonstrate the effectiveness of our joint feature learning.

E. Baseline Evaluation Details
E.1. State-of-the-Art Pose Forecasting

We evaluate the performance of our baselines using the same
input data that is available to our method. Pose forecast-
ing baselines DLow [96], GSPS [63], and STARS [93] are
trained and evaluated on sequences of our manually anno-
tated characteristic poses. Since there is no ground-truth
3D pose data available, we first use RepNet [88], a state-of-
the-art 3D pose estimation method, to retrieve 3D skeletons
from our 2D characteristic poses. We train this method from
scratch using the same database of valid 3D poses that is
available to our method, allowing for a fair comparison.

E.2. State-of-the-Art Action Label Forecasting

We train action baselines AVT [35] and FUTR [36] using
sequences of our characteristic pose frames together with
the corresponding action labels as input. For AVT, we use
their default parameters used by the original authors for
their ablation on third-person dataset 50Salads/Breakfast,
inputting our RGB frames instead. For a fair comparison,
we also supply the action and object history for each step
by encoding both label sequences with a small encoder (a
single linear layer) each and fuse these features with the



MPII Cooking 11 IKEA ASM
2d 3d Action Accuracy 2d 3d Action Accuracy
Approach MPIPE [px] | | Quality T || top-171 ‘ top-3 1 || MPJPE [px] | | Quality T || top-11 ‘ top-3 1
No Objects 61 0.52 28% 51% 42 0.30 29% 50%
No Noise 55 0.49 29% 50% 48 0.29 30% 51%
[Ours [ 50 [ 055 | 29% | 51% | 40 [ 031 [ 29% | 50% |
Table 5. Ablations studies with no object input and no noise input.
2D 3D Action Accuracy input (“AVT RGB” and “FUTR RGB” in the main results
Poses MPJPE [px] | [| Quality T [ top-11 [[ top-3 1 figure), and one with additional 2D skeleton input (skeletons
Uncoupled 64 0.30 28% || 48% rendered on top of the RGB frames) from the skeletons that
Middle 41 035 28% 47% we extract with OpenPose [13] (“AVT RGB+Skeleton” and
Random 49 024 | 28% ) 49% “FUTR RGB+Skeleton™).
Characteristic 41 0.35 29% 50%

Table 6. Ablation on pose forecasting, on the IKEA-ASM [§]
dataset. We consider predicting poses following state-of-the-art
pose forecasting in a decoupled fashion from actions (uncoupled),
as well as poses coupled to actions in various fashions: middle
(the middle pose of an action range), random (a random pose of
the action), and our characteristic pose prediction, which benefits
action prediction the most.

2d 3d Action Accuracy
Approach MPIPE [px] | | Quality 1 | top-11 | top-3 1
FUTR RGB + Skeleton - - 38% 64%
RepNet + STARS 89 0.34 - -
Ours (No Interactions) 68 0.40 40% 67%
Ours (Interaction Modeling) 58 0.41 H 48 % ‘ 73% ‘

Setting

Table 7. Multi-Actor Scenario on TICaM dataset (Singh et al. 21).

[ MPI Cooking IT I 2d 3d [ Action Accuracy |

| Approach [ MPIPE [px] | | Quality 1 [| top-11 [ top-31 |
OpenPose + max. 20px noise 59 0.45 26% 47%
OpenPose + max. 10px noise 57 0.47 26% 46%
Ours (using Detectron2) 47 0.54 28% 55%
Ours (using AlphaPose) 46 0.57 28% 56%

‘ Ours (using OpenPose) H 50 ‘ 0.55 H 29% ‘ 51% ‘

Table 8. Robustness to 2D Pose Input Quality & Detectors.

image features generated by the AVT encoder. For FUTR,
we first generate I3D features [15] from our RGB frames
and concatenate them with action and object history after
encoding these in the same way as for AVT.

We then train two variants of both methods: One with
the raw RGB frames, action history, and object history as
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E.3. Supervised 3D Pose Lifting

For better comparability, we used weakly supervised ap-
proach [88] for pose lifting. This is important, since there
is no ground-truth coupling between 2D and corresponding
3D action poses in our setting. Nevertheless, we compare to
baselines [63, 93, 96] in Tab. 9 with poses lifted using fully
supervised pre-trained SPIN [50]; our approach outperforms
even these improved baselines in terms of 2D MPJPE.

MPII Cooking I IKEA ASM
2d [ 3d 2d [ 3d
Approach MPIPE [px] | | Quality T [| MPIPE [px] | | Quality 1
SPIN [50] + DLow [96] 81 0.89 43 0.43
SPIN [50] + GSPS [63] 74 0.66 45 0.29
SPIN [50] + STARS [93] 66 0.80 41 0.40
[ Ours [ 50 [ 055 40 [ 031 |

Table 9. Comparison to pose baselines using fully-supervised
pre-trained 3D pose estimation method SPIN [50]. In our main
experiments, we instead compare to weakly supervised baseline
RepNet [88] for a fair comparison.

F. 3D Quality Metric Details

For our pose quality metric, we use a 3-layer MLP binary
classifier of 3D poses. Training poses are randomly sampled
from ground-truth (real) and predicted (fake) poses from
each training epoch, producing a total of 100k real and fake
poses each. Fake poses exhibit a range of small to large unre-
alistic deformations, depending on when they were sampled,
ranging from random joint placements to widely inconsis-
tent bone lengths to unnatural joint angles to only minor
inconsistencies in the bone lengths.

As an additional intuitive metric we show the mean ab-
solute bone length difference of right and left body in 3D
in Tab. 10. We observe that this metric correlates with our
classifier-based quality.



Input

“pick up”

G‘align”

GSPS

DLow

STARS

Ours

“Spin” “plck up” “SCI‘CW” “spin” “align”

Target

“change t.”

“Spin” “pick up” “SCI‘eW” “Spin” “ple up”

Time

Figure 6. Additional qualitative comparison between DLow [96], GSPS [63], STARS [93], and our method on two sequences (left on MPII
Cooking 2 [72], right on IKEA-ASM [8]). For each method, we show a the 3D predicted pose projected into the 2D target view, without
background for a pose only version (small) as well as with background for context (full size).

G. Architecture Details

Generator Network Fig. 7 shows our generator architecture
in detail with input and output dimensions for linear layers,
and the slope for leaky ReLU layers.

Critic Network Our adversarial critic network processes
generator outputs with 4 linear layers and 3 kinematic chain
layers which are designed to encourage correct bone lengths
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(as shown in [88]), in parallel. 2 linear layers then combine
both outputs and produce the final critic score.

H. Data Details
H.1. Camera Parameters

While intrinsic camera parameters are often available in
captured image data, the camera parameters for captured



MPII Cooking 11 IKEA ASM |

‘ Approach Symm. [mm] | ‘ Quality 1 H Symm. [mm] | ‘ Quality 1 ‘
RepNet [88] + DLow [96] 14 0.70 45 0.30
RepNet [88] + GSPS [63] 21 0.57 59 0.11

RepNet [88] + STARS [93] 16 0.62 46 0.27
No 3D Adversarial Loss 75 0.10 66 0.05
2D Projection Loss Only 57 0.21 61 0.09

No Action Loss 22 0.53 39 0.29
Ours 22 0.55 39 0.31

Table 10. Additional quality metric and its correlation to our
classifier-based metric: Absolute bone length difference between
right and left body, compared to pose baselines and ablations.

video were not available from the MPII Cooking 2 [72]
dataset to use for pose projection. We thus optimized for
intrinsic camera parameters from the video sequence data
in correspondence with the 3D scene reconstruction of the
empty kitchen environment, as given by [81].

For IKEA-ASM [8], we use the provided intrinsic camera
parameters directly.

H.2. Pose Joint Layout

We use the 9 upper-body joints of the native OpenPose [13]
joint layout for skeletons in 2D, and adapt skeletons in our
3D database to use the same format. Tab. 11 shows the
correspondence between our joint layout, OpenPose [13],
Human3.6m [42], and SMPL-X [68]. 3D datasets AMASS
[60] and GRAB [82] provide human bodies in SMPL-X for-
mat; we first extract their skeleton joints using their publicly
available code and then convert it into our layout using the
correspondences in Tab. 11.

H.3. MPII Cooking 2 Details

We use action labels as annotated in the 2D cooking action
dataset MPII Cooking 2 [72]. These annotations provide
action labels (87 classes) for frame ranges in each sequence
as well as the involved objects (187 classes). We first cluster
similar actions together, yielding a total of 37 action clusters,
which we then use as action classes in our experiments.

In addition, since our goal is to forecast upper-body ac-
tions with objects in the foreground, we remove instances
of poses and corresponding actions that occur in the back-
ground - e.g., when taking out objects from the cupboard, or
from the fridge.

In total, there are 272 cooking action sequences; we create
a random train/val/test split along sequences with a ratio of
70% / 15% / 15%, yielding 190, 40, 40 sequences for each
set.

H.4. IKEA-ASM Details

We use action labels as annotated in the IKEA furniture
assembly dataset IKEA-ASM [8]. These annotations provide
action labels (31 classes) for frame ranges in each sequence;
we use them without explicit object information since each
action already encodes its associated object.
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In total, there are 370 furniture assembly action se-
quences; we create a random train/val/test split along se-
quences with a ratio of 70% / 15% / 15%, yielding 227, 48,
48 sequences for each set.
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for both 2D and 3D skeletons.

Table 11. Joint layout used in our experiments,
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Figure 7. Network architecture specification.
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