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Figure 1. We present an approach to generate realistic 3D human-object interactions (HOIs), from a text description and given static object
geometry to be interacted with (left). Our main insight is to explicitly model contact (visualized as colors on the body mesh, closer contact
in red), in tandem with human and object sequences, in a joint diffusion process. In addition to synthesizing HOIs from text, we can also
synthesize human motions conditioned on given object trajectories (top right), and generate interactions in static scene scans (bottom right).

Abstract
We propose CG-HOI, the first method to address the task

of generating dynamic 3D human-object interactions (HOIs)
from text. We model the motion of both human and object
in an interdependent fashion, as semantically rich human
motion rarely happens in isolation without any interactions.
Our key insight is that explicitly modeling contact between
the human body surface and object geometry can be used as
strong proxy guidance, both during training and inference.
Using this guidance to bridge human and object motion
enables generating more realistic and physically plausible
interaction sequences, where the human body and corre-
sponding object move in a coherent manner. Our method
first learns to model human motion, object motion, and con-
tact in a joint diffusion process, inter-correlated through
cross-attention. We then leverage this learned contact for
guidance during inference synthesis of realistic, coherent
HOIs. Extensive evaluation shows that our joint contact-
based human-object interaction approach generates realistic
and physically plausible sequences, and we show two ap-

plications highlighting the capabilities of our method. Con-
ditioned on a given object trajectory, we can generate the
corresponding human motion without re-training, demon-
strating strong human-object interdependency learning. Our
approach is also flexible, and can be applied to static real-
world 3D scene scans.

1. Introduction

Generating human motion sequences in 3D is important for
many real-world applications, e.g. efficient realistic charac-
ter animation, assistive robotic systems, room layout plan-
ning, or human behavior simulation. Crucially, human inter-
action is interdependent with the object(s) being interacted
with; the object structure of a chair or ball, for instance, con-
strains the possible human motions with the object (e.g., sit-
ting, lifting), and the human action often impacts the object
motion (e.g., sitting on a swivel chair, carrying a backpack).

Existing works typically focus solely on generating dy-
namic humans, and thereby disregarding their surroundings
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[13, 16, 57, 61, 102, 105], or grounding such motion gen-
erations in a static environment that remains unchanged
throughout the entire sequence [31, 36, 77, 79, 83, 99, 103,
104, 107]. However, real-world human interactions affect
the environment. For instance, even when simply sitting
down on a chair, the chair is typically moved: to adjust it
to the needs of the interacting human, or to move it away
from other objects such as a table. Thus, for realistic mod-
eling of human-object interactions, we must consider the
interdependency of object and human motions.

We present CG-HOI, the first approach to address the
task of generating realistic 3D human-object interactions
from text descriptions, by jointly predicting a sequence of
3D human body motion along with the object motion. Key
to our approach is to not only model human and object mo-
tion, but also to explicitly model contact as a bridge between
human and object. In particular, we model contact by pre-
dicting contact distances from the human body surface to
the closest point on the surface of the object being interacted
with. This explicit modeling of contact helps to encourage
human and object motion to be semantically coherent, as
well as provide a constraint indicating physical plausibility
(e.g., discouraging objects to float without support).

CG-HOI jointly models human, object, and contact to-
gether in a denoising diffusion process. Our joint diffusion
model is designed to encourage information exchange be-
tween all three modalities through cross-attention blocks.
Additionally, we employ a contact weighting scheme, based
on the insight that object motion, when being manipulated
by a human, is most defined by the motion of the body part
in closest contact (Fig. 3). We make use of this by generating
separate object motion hypotheses for multiple parts of the
human body and aggregating them based on that part’s pre-
dicted contact. During inference, we leverage the predicted
contact distances to refine synthesized sequences through
our contact-based diffusion guidance, which penalizes syn-
thesizing sequences with human-object contact far from the
predicted contact distances.

Our method is able to generate realistic and physically
plausible human-object interactions, and we evaluate our
approach on two widely-used interaction datasets, BE-
HAVE [8] and CHAIRS [35]. In addition, we also demon-
strate the usefulness of our model with two related appli-
cations: First, generating human motion given a specific
object trajectory without any retraining, which demonstrates
our learned human-object motion interdependencies. Sec-
ond, populating a static 3D scene scan with human-object
interactions of segmented object instances, showing the ap-
plicability of our method to general real-world 3D scans.

In summary, our contributions are three-fold:
• We propose an approach to generate realistic, diverse, and

physically plausible human-object interaction sequences
by jointly modeling human motion, object motion, and

contact through cross-attention in a diffusion process.
• We formulate a holistic contact representation: Object

motion hypotheses are generated for multiple pre-defined
points on the surface of the human body and aggregated
based on predicted contact distances, enabling comprehen-
sive body influence on contact while focusing on the body
parts in closer contact to the object.

• We propose a contact-based guidance during synthesis of
human-object interactions, leveraging predicted contacts
to refine generated interactions, leading to more physically
plausible results.

2. Related Work
3D Human Motion Generation. Generating sequences
of 3D humans in motion is a task which evolved noticeably
over the last few years. Traditionally, many methods used
recurrent approaches [2, 14, 20, 22, 32, 50] and, improv-
ing both fidelity and predicted sequence length, graph- and
attention-based frameworks [45, 46, 68]. Notably, genera-
tion can either happen deterministically, predicting one likely
future human pose sequence [18, 20, 45, 46, 50], or stochas-
tically, thereby also modelling the uncertainty inherent to
future human motion [4, 7, 9, 17, 47, 85, 86, 91].

Recently, denoising diffusion models [64, 65] showed
impressive results in 2D image generation, producing high
fidelity and diverse images [30, 65]. Diffusion models allow
for guidance during inference, with classifier-free guidance
[29, 52] widely used to trade off between generation quality
and diversity. Inspired by these advances, various methods
have been proposed to model 3D human motion through dif-
fusion, using U-Nets [13, 16, 57, 61, 102, 105], transformers
[1, 57, 63, 66, 71, 72, 78, 80, 81, 87, 88, 94], or custom ar-
chitectures [3, 6, 12, 15, 95]. Custom diffusion guidance
has also been shown to aid controllability [33, 38, 60] and
physical plausibility [92].

In addition to unconditional motion generation, condi-
tioning on text descriptions allows for more control over
the generation result [61, 71, 78, 81, 94, 105]. In fact, gen-
erating plausible and corresponding motion from textual
descriptions has been an area of interest well before the
popularity of diffusion models [5, 13, 25, 37, 39, 55, 93].

These methods show strong potential for 3D human mo-
tion generation, but focus on a skeleton representation of
the human body, and only consider human motion in isola-
tion, without naturally occurring interactions. To generate
realistic human-object interactions, we must consider the
surface of the human body and its motion with respect to
object motion, which we characterize as contact.

3D Human Motion in Scenes. As human motion typi-
cally occurs not in isolation but in the context of an ob-
ject or surrounding environment, various methods have ex-
plored learning plausible placement of humans into scenes,
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Figure 2. Method Overview. Given a brief text description an an object geometry, CG-HOI produces a human-object interaction sequence
where both human and object motion are modeled. To produce realistic human-object interactions, we additionally model contact to bridge
the interdependent motions. Our method jointly generates all three during training (left), using a U-Net-based diffusion with cross-attention
across human, object, and contact. During inference (right), we drive synthesis under guidance of estimated contact to sample more
physically plausible interactions.

both physically and semantically, [26, 28, 96, 100], fore-
casting future motion given context [11, 48], or generating
plausible walking and sitting animations [27, 31, 36, 75–
77, 79, 83, 99, 103, 104, 107]. This enables more natural
modeling of human reactions to their environment; however,
the generated interactions remain limited due to the assump-
tion of a static scene environment, resulting in a focus on
walking or sitting movements.

Recent methods have also focused on more fine-trained in-
teractions by generating human motion given a single static
object [41, 42, 67, 69, 82, 97, 98]. While these methods
only focus on human motion generation for a static object,
InterDiff [84] jointly forecasts both human and object mo-
tion sequences given an initial sequence observation. Our
approach also models both human and object motion, but
we formulate a flexible text-conditioned generative model
for dynamic human and object motion, modeling the interde-
pendency between human, object, and contact to synthesize
more realistic interactions under various application settings.

Contact Prediction for Human-Object Interactions.
While there is a large corpus of related work for human
motion prediction, only few works focus on object motion
generation [19, 51, 59, 110]. Notably, these methods predict
object movement in isolation, making interactions limited, as
they typically involve interdependency with human motion.

Contact prediction has been most studied in recent years
for the task of fine-grained hand-object interaction [10, 21,
40, 43, 89, 106, 108]. It is defined either as binary labels on
the surface [10, 21, 40, 43, 89, 106] or as the signed distance
to a corresponding geometry point [108]. In these works,
predicting object and hand states without correct contact
leads to noticeable artifacts. Contact prediction itself has
also been the focus of several works [23, 34, 73, 82], either
predicting contact areas or optimizing for them.

Applied to the task of generating whole-body human-
object interactions, this requires access to the full surface

geometry of both object and human. Only few recent mo-
tion generation works focus on generating full-body geomet-
ric representations of humans [49, 54, 55, 70, 85, 99, 101]
instead of simplified skeletons which is a first step to-
wards physically correct interaction generation. However,
while several of these works acknowledge that contact mod-
eling would be essential for more plausible interactions
[54, 55, 99], they do not model full-body contact.

We approach the task of generating plausible human-
object motion from only the object geometry and a textual
description as a joint task and show that considering the joint
behavior of full-body human, object, and contact between
the two benefits output synthesis to generate realistic human-
object interaction sequences.

3. Method Overview
CG-HOI jointly generates sequences of human body and
object representations, alongside contact on the human body
surface. Reasoning jointly about all three modalities in both
training and inference enables generation of semantically
meaningful human-object interaction sequences.

Fig. 2 shows a high-level overview of our approach: We
consider as condition a brief text description T of the action
to be performed, along with the static geometry G of the
object to be interacted with, and generate a sequence of F
frames x = [x1,x2, ...,xF ] where each frame xi consists of
representations for the object transformation oi, for the hu-
man body surface hi, and for the contact ci between human
and object geometry. We denote as H = {hi} the human
body representations, O = {oi} the object transformations,
and C = {ci} the contact representations.

We first train a denoising diffusion process to generate
H , O, and C, using a U-Net architecture with per-modality
residual blocks and cross-attention modules. Using cross-
attention between human, object motion, and contact allows
for effectively learning interdependencies and and feature
sharing (Sec. 4). We use the generated contact to guide
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both training and inference: Instead of predicting one object
motion hypothesis per sequence, we generate multiple, and
aggregate them based on predicted contacts, such that body
parts in closer contact with the object have a stronger correla-
tion with the final object motion (Sec. 4.3). During inference,
the trained model generates H , O, and C. For each step of
the diffusion inference, we use predicted contact C to guide
the generation of H and O, by encouraging closeness of
recomputed contact and predicted contact, producing more
refined and realistic interactions overall (Sec. 5).

4. Human-Object Interaction Diffusion
4.1. Probabilistic Denoising Diffusion

Our approach uses a diffusion process to jointly generate a
sequence of human poses, object transformations, and con-
tact distances in a motion sequence from isotropic Gaussian
noise in an iterative process, removing more noise at each
step. More specifically, during training we add noise depend-
ing on the time step (“forward process”) and train a neural
network to reverse this process, by directly predicting the
clean sample from noisy input. Mathematically, the forward
process follows a Markov chain with T steps, yielding a
series of time-dependent distributions q(zt|zt−1) with noise
being injected at each time step until the final distribution
zT is close to N (0, I). Formally,

q(zt|zt−1) = N (
√

βtzt−1 + (1− βt)I) (1)

with the variance of the Gaussian noise at time t denoted as
βt, and β0 = 0.

Since we adopt the Denoising Diffusion Probabilistic
Model [30], we can sample zt directly from z0 as

zt =
√
αtz0 +

√
1− αtϵ (2)

with αt =
∏t

t′=0(1− βt), and ϵ ∼ N (0, I).
For the reverse process, we follow [57, 71, 84], directly

recovering the original signal z̃ instead of the added noise.

Human-Object Interactions To model human-object in-
teractions with diffusion, we employ our neural network
formulation G. G operates on the noised vector of concate-
nated human, object, and contact representations, together
with the current time step t, and a condition consisting of
object point cloud G, encoded by an encoder EG, and text
information T , encoded by encoder ET . Formally,

z̃ = G(zt, t, EG(G)⊕ ET (T )) (3)

More specifically, in our scenario ET extracts text fea-
tures with a pre-trained CLIP [58] encoder. Encoder EG

processes object geometry G as a uniformly sampled point
cloud in world coordinate space with a PointNet [56] pre-
trained on object parts segmentation.

Object transformations oi are represented as global trans-
lation and rotation using continuous 6D rotation representa-
tion [109]. In contrast to prior work [17, 41, 71, 78, 91, 94,
97] which focused on representing human motion in a sim-
plified manner as a collection of J human joints, disregard-
ing both identity-specific and pose-specific body shape, we
model physically plausible human-object contacts between
body surface and geometry. Thus, we represent the human
body hi in SMPL [44] parameters: hi = {hp

i , h
b
i , h

r
i , h

t
i}

with pose parameters hp
i ∈ R63, shape parameters hb

i ∈ R10,
as well as global rotation hr

i ∈ R3 and translation ht
i ∈ R3.

These body parameters can then be converted back into a
valid human body surface mesh in a differentiable manner,
using the SMPL [44] model. This allows us to reason about
the contact between human body surface and object geom-
etry. We represent contact ci on the human body as the
distance between a set of M = 128 uniformly distributed
motion markers on the body surface to the closest point of the
object geometry, for each marker. Specifically, we represent
contact for frame xi and j-th contact marker (j ∈ {0..M})
cji as its distance from the human body surface to the closest
point on the same frame’s object surface.

4.2. Human-Object-Contact Cross-Attention

We jointly predict human body sequences {hi}, object trans-
formations {oi}, and corresponding contact distances {ci}
in our diffusion approach. We employ a U-Net backbone
for diffusion across these outputs, with separate residual
blocks for human, object, and contact representations, build-
ing modality-specific latent feature representations. As we
aim to model the inter-dependency across human, object, and
contact, we introduce custom human-object-contact cross-
attention modules after every residual block where each
modality attends to the other two.

We follow the formulation of Scaled Dot-Product Atten-
tion [74], computing the updated latent human body feature:

hi = softmax

(
QKT

√
D

)
V , (4)

with query Q = hi, and key and value K = V = oi ⊙ ci
(⊙ denotes concatenation). Applying this similarly to oi and
ci yields the final features after each cross-attention module.

4.3. Contact-Based Object Transform Weighting

As visualized in Fig. 3, object motion is naturally most
influenced by parts of the human body in very close contact
to the object (as they are often the cause of the motion),
and less impacted (if at all) by body parts further away.
For instance, if a person moves an object with their hands,
the object follows the hands but not necessarily other body
parts (e.g., body and feet may remain static or walk in a
different direction). Thus, instead of directly generating
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Figure 3. An object’s trajectory is largely defined by the motion
of the region of the body in close contact with the object, e.g. the
hand(s) when carrying an object (left, middle) or the lower body
when moving with an object while sitting (right). This informs our
contact-based approach to generating object motion.

one object motion hypothesis oi alongside the corresponding
human motion hi, we couple oi to the M body contact points
j ∈ {1..M} and their predicted distances {cji} between
human body surface and object geometry.

Formally, we predict object transformation hypotheses oji
for each contact point on the human body, and weigh them
with the inverse of their predicted contact distance cji :

oi =
1∑
j ci

N∑
j=0

(max(|ci|)− |cji |)o
j
i , (5)

4.4. Loss Formulation

During training, the input is a noised vector z, containing F
frames {xi}, each a concatenation of human body represen-
tation hi, object transformation oi, and contact parameters
ci. As condition C, we use additionally input encoded object
geometry G and text description T . The training process is
then supervised with the ground-truth sequence containing
ĥi, ôi, ĉi, minimizing a common objective:

L = λh||hi − ĥi||1 + λo||oi − ôi||1 + λc||ci − ĉi||2, (6)

with λh = 1.0, λo = 0.9, λc = 0.9. We use classifier-free
guidance [29] for improved fidelity during inference, thus
masking out the conditioning signal with 10% probability.

5. Interaction Generation
Using our trained network model, we can generate novel
human-object interaction sequences for a given object geom-
etry and a short text description using our weighting scheme
for generating object transformations, and a custom guid-
ance function on top of classifier-free guidance to generate
physically plausible sequences.

Specifically, we use our trained model to reverse the for-
ward diffusion process of Eq. 2: Starting with noised sample
zT ∼ N (0, I), we iteratively use our trained network model
G to estimate cleaned sample z0:

zt−1 =
√
αtz̃+

√
1− αtϵ. (7)

5.1. Contact-Based Diffusion Guidance

While our joint human-object-contact training already leads
to some plausible motions, generated sequences are not ex-
plicitly constrained to respect contact estimates during infer-
ence, which can lead to inconsistent contact between human
and object motion (e.g., floating objects). Thus, we intro-
duce a contact-based guidance during inference to refine
predictions, using a cost function G((x)t) which takes as
input the denoised human, object, and contact predictions
zt = [ht, ot, ct] at diffusion step t. Based on the differ-
ence between predicted and actual contact distances for each
contact point, we then calculate the gradient ∇ztG(zt).

We use this gradient for diffusion guidance, following
[38], by re-calculating the mean prediction µt at each time t:

µ̂t = µt + s
∑
t

∇xt
G(xt), (8)

for a scaling factor s. This guidance is indirect but dense in
time, and is able to correct physical contact inconsistencies
in the predicted sequences during inference time, without
requiring any explicit post-processing steps.

5.2. Conditioning on Object Trajectory

While our model has been trained with text and static object
geometry as condition, we can also apply the same trained
model for conditional generation of a human sequence given
an object sequence and text description. Note that this does
not require any re-training, as our model has learned a strong
correlation between human and object motion. Instead, we
use a replacement-based approach, and inject the given ob-
ject motion O′ into the diffusion process during inference at
every step. Following Eq. 7, we obtain:

zt−1 =
√
αtz̃′t +

√
1− αtϵ, (9)

with z̃′ = [ht, o
′
t, ct], concatenating human motion ht, con-

tact distances ct, and injected given object motion o′t.

6. Results
We evaluate our approach using two commonly used human-
object interaction datasets BEHAVE [8] and CHAIRS [35]
on a range of metrics, measuring motion fidelity and diversity.
We show that our approach is able to generate realistic and
diverse motion on both datasets, across a variety of objects
and types of interactions.

6.1. Experimental Setup

Datasets We conduct our experiments on two datasets con-
taining interactions between whole-body 3D humans and
corresponding objects. CHAIRS [35] captures 46 subjects
as their SMPL-X [53] bodies interacting with 81 different
types of chairs and sofas. We extract sequences in which
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BEHAVE CHAIRS
Task Approach R-Prec. (top-3) ↑ FID ↓ Diversity → MModality → R-Prec. (top-3) ↑ FID ↓ Diversity → MModality →

Real (human) 0.73 0.09 4.23 4.55 0.83 0.01 7.34 3.00
Text-Cond. MDM [71] 0.52 4.54 5.44 5.12 0.72 5.99 6.83 3.45
Human InterDiff [84] 0.49 5.36 3.98 3.98 0.63 6.76 5.24 2.44
Only Ours 0.60 4.26 4.92 4.10 0.78 5.24 7.90 3.22

Real 0.81 0.17 6.80 6.24 0.87 0.02 9.91 6.12
Motion- InterDiff [84] 0.68 3.86 5.62 5.90 0.67 4.83 7.49 4.87
Cond. HOI Ours 0.71 3.52 6.89 6.43 0.79 4.01 8.42 6.29
Text- MDM [71] 0.49 9.21 6.51 8.19 0.53 9.23 6.23 7.44
Cond. InterDiff [84] 0.53 8.70 3.85 4.23 0.69 7.53 5.23 4.63
HOI Ours 0.62 6.31 6.63 5.47 0.74 6.45 8.91 5.94

Table 1. Quantitative comparison with state-of-the-art approaches, MDM [71] and InterDiff [84]. Human Only results are evaluated only on
the human pose sequence, and motion-cond. denotes predictions additionally conditioned on past observations of both human and object
behavior. For metrics with →, results closer to the real distribution are better. Our approach outperforms these baselines in all three settings,
indicating a strong learned correlation between human and object motion.

both human and object are in motion, yielding ≈ 1300 HOI
sequences, each labeled with a text description. We use a
random 80/10/10 split along object classes, ensuring that test
objects are not seen during training. BEHAVE [8] captures
8 participants as their SMPL-H [62] parameters alongside
20 different objects. This yields ≈ 520 sequences with cor-
responding text descriptions. We use their original train/test
split. We sample both datasets at 20 frames per second,
and generate 32 frames for CHAIRS and 64 for BEHAVE,
leading to generated motion that lasts up to 3 seconds.

Implementation Details We train our model with batch size
64 for 600k steps (≈24 hours), after which we choose the
checkpoint that minimized validation FID, following [84].
Our attention uses 4 heads and a latent dimension of 256.
Input text is encoded using a frozen CLIP-ViT-B/32 model.
For classifier-free guidance during inference time, we use
a guidance scale of 2.5, which empirically provides a good
trade-off between diversity and fidelity. For our inference-
time contact-based guidance, we use scale s = 100.0.

6.2. Evaluation Metrics

We measure realism and diversity of combined human and
object motion, alongside closeness to the text description,
following established practices [24, 25, 71]. We first train
a joint human-object motion feature extractor and separate
text feature extractor using a contrastive loss to produce
geometrically close feature vectors for matched text-motion
pairs, and vice versa. These encoders are then used for the
following metrics:

R-Precision measures the closeness of the text condition and
generated HOI in latent feature space, and reports whether
the correct match falls in the top 3 closest feature vectors.
Frechet Inception Distance (FID) is commonly used to
evaluate the similarity between generated and ground-truth
distribution in encoded feature space.
Diversity and MultiModality. Diversity measures the mo-

tion variance across all text descriptions and is defined as
1
N

∑N
i=1 ||vi − v′i||2 between two randomly drawn subsets

{vi} and {v′i}. MultiModality (MModality) measures the
average such variance intra-class, for each text description.
Perceptual User Study. The exact perceptual quality of
human-object interactions is difficult to capture with any
single metric; thus, we conducted a user study with 32 par-
ticipants to evaluate our method in comparison to baseline
approaches. Participants are shown side-by side views of
sequences with the same geometry and text conditioning,
and asked to choose 1) Which one follows the given text
better and 2) Which one looks more realistic overall.

6.3. Comparison to Baselines

As our method is the first to enable generationg human and
object motion from text, there are no baselines available
for direct comparison. InterDiff [84] is closest to our ap-
proach, performing forecasting from observed human and
object motion as input and predicting a plausible continu-
ation. In Tab. 1, we compare to ours first in their setting,
using observed motion as condition (motion-cond.), for a
fair comparison. Additionally, we modify their approach by
replacing observed motion encoders with our text encoder,
allowing for a comparison in our setting (text-cond.). We
also compare with MDM [71], a state-of-the-art method for
human-only sequence generation from text, both in their
original setting, only predicting human sequences, and ex-
tending theirs to also generate object sequences, by adding
additional tokens and geometry conditioning to their trans-
former encoder formulation. For more details of baseline
setup, we refer to the appendix. We evaluate the quality
of generated human-object interactions as well as human-
only generation, only evaluating the human sequence for our
method, as compared to the generated sequences of MDM.

Both Tab. 1 and the user study in Tab. 5 show that our
approach is able to generate more realistic and physically
plausible human-object interaction sequences than baselines.
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Condition MDM [71] InterDiff [84] Ours

Move a 

chair with 

the hand

Play with a 

yoga ball

Move a 

small table

Figure 4. Qualitative comparison to state-of-the-art methods MDM [71] and InterDiff [84]. Our approach generates high-quality HOIs by
jointly modeling contact (closer contact in red), reducing penetration and floating artifacts (black highlight boxes).

In Fig. 4, we see that our approach synthesizes more mean-
ingful human-object interaction with respect to contact and
mitigating independent object floating.

6.4. Ablation Studies

Cross-attention enables learning human-object interde-
pendencies. Tab. 2 shows that our human-object-contact

Figure 5. Perceptual User Study. Participants significantly favor
our method over baselines, for overall realism and text coherence.

cross-attention (Sec. 4.2) significantly improves performance
by effectively sharing information between human, contact,
and object sequence modalities. In Fig. 6, we see this en-
courages realistic contact between human and object.

Contact prediction improves HOI generation perfor-
mance. Predicting contact (Sec. 5) is crucial to generating
more realistic human-object sequences, resulting in more
realistic interactions between human and object (Fig. 6),
and improved fidelity (Tab. 2). Notably, learning contact
jointly with human and object motion improves overall qual-
ity, compared to a separately trained contact model used for
inference guidance (“Separate contact pred.”, Tab. 2).

Contact-based object transformation weighting improves
generation performance. Weighting predicted object mo-
tion hypotheses with predicted contact (Sec. 4.3) improves
HOI generation over naive object sequence prediction, both

BEHAVE CHAIRS
Approach R-Prec. (top-3) ↑ FID ↓ Diversity → MModality → R-Prec. (top-3) ↑ FID ↓ Diversity → MModality →
Real 0.81 0.17 6.80 6.24 0.87 0.02 9.91 6.12
No cross-attention 0.35 10.44 8.23 7.40 0.49 10.84 12.22 10.64
No contact prediction 0.41 9.64 10.10 6.89 0.41 8.53 11.56 9.15
Separate contact pred. 0.47 8.01 5.12 5.12 0.52 9.34 7.65 4.62
No contact weighting 0.55 8.54 6.52 5.29 0.64 7.55 8.56 5.45
No contact guidance 0.59 7.22 7.84 5.30 0.70 7.41 8.05 5.76
Ours 0.62 6.31 6.63 5.47 0.74 6.74 8.91 5.94

Table 2. Ablation on our design choices. Joint contact prediction with cross-attention encourages the generation of more natural HOIs, and
our weighting scheme and inference-time contact guidance together enable the best generation performance.
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Figure 6. Visualization of ablation of our method design: Gen-
eration, weighting, and inference-time guidance work together to
enable realistic interactions in our method, resolving artifacts such
as object floating.

Move a 

trashbin

Play with 

a yoga ball

Figure 7. Given an object trajectory at inference time, our method
can generate corresponding human motion without re-training.

quantitatively in Tab. 2 (“No contact weighting”) and visu-
ally as realistic human-object interactions in Fig. 6.

Contact-based guidance during inference helps produce
physically plausible interactions. As visualized in Fig. 6
and evaluated in Tab. 2, using custom guidance based on
predicted contacts leads to a higher degree of fidelity and
physical plausibility.

6.5. Applications

Human motion generation given object trajectory. Our
approach can also be directly applied to conditionally gener-

Sit on 

the chair

Move 

the chair

Figure 8. Application to static scene scans. Our method can
generate HOIs from segmented objects in such environments.

ate human sequences given object sequences as condition,
as shown in Fig. 7. As our model learns a strong corre-
spondence between object and human motion, facilitated
by contact distance predictions, we are able to condition
without any additional training.

Populating 3D scans. Fig. 8 shows that we can also apply
our method to generate human-object interactions in static
scene scans. Here, we use a scene from the ScanNet++
dataset [90], with their existing semantic object segmen-
tation. This enables potential to generate realistic human
motion sequences only given a static scene environment.

6.6. Limitations

While we have demonstrated the usefulness of joint contact
prediction in 3D HOI generation, several limitations remain.
For instance, our method focuses on realistic interactions
with a single object. We show that this can be applied to ob-
jects in static 3D scans; however, we do not model multiple
objects together, which could have the potential to model
more complex long-term human behavior. Additionally, our
method requires expensive 3D HOI captures for training; a
weakly supervised approach leveraging further supervision
from 2D action data might be able to represent more diverse
scenarios.

7. Conclusion
We propose an approach to generating realistic, dynamic
human-object interactions based on contact modeling. Our
diffusion model effectively learns interdependencies be-
tween human, object, and contact through cross-attention
along with our contact-based object transformation weight-
ing. Our predicted contacts further facilitate refinement using
custom diffusion guidance, generating diverse, realistic in-
teractions based on text descriptions. Since our model learns
a strong correlation between human and object sequences,
we can use it to conditionally generate human motion se-
quences from given object sequences in a zero-shot manner.
Extensive experimental evaluation confirms both fidelity and
diversity of our generated sequences and shows improved
performance compared to related state-of-the-art baselines.
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Appendix

We show in this appendix additional qualitative and quantita-
tive results (Sec. A and Sec. B), detail our baseline evaluation
protocol (Sec. C), elaborate on the metrics used in the main
paper (Sec. D), show the architecture used in our approach
(Sec. E), and provide additional details regarding the data
(Sec. F).

A. Additional Qualitative Results
We show additional generated 3D human-object interactions
of our method in Fig. 9, with object geometry and text con-
dition on the left, and our generated sequence on the right.

B. Additional Quantitative Results
B.1. Penetration metric

The exact fidelity and diversity of our results is hard to cap-
ture with any single metric. Thus, we evaluate multiple such
metrics in the main paper (R-Precision, FID, Diversity, Mul-
tiModality), and conduct a perceptual user study to verify
the metrics’ expressiveness.

Here, we provide an additional evaluation based on an
intuitive physics-based metric: The ratio of frames with
human-object inter-penetrations. Due to the imperfect na-
ture of human-object interaction capture, a non-zero amount
of penetrations is expected; however, a high amount of pene-
tration indicates low quality interactions with independently
floating and often intersecting objects.

We see in Tab. 3 that our approach leads to less over-
all penetrations, which confirms the higher quality of our
sequences, compared to the baselines.

BEHAVE CHAIRS
InterDiff 0.92 0.81
MDM 0.67 0.78
Ours 0.31 0.36

Table 3. Ratio of frames with penetrations between human and
object. Combined with the metrics in the main paper, a lower
number corresponds to more realistic interactions. Our approach
produces less such inter-penetrations, compared to baselines.

B.2. Novelty of Generated Interactions

We perform an additional interaction novelty analysis to
verify that our method does not simply retrieve memorized
train sequences but is indeed able to generate novel human-
object interactions. To do so, we generate ≈ 500 sequences
from both datasets and retrieve the top-3 most similar train
sequences, as measured by the l2 distance in human body
and object transformation parameter space.

Fig. 10 shows the top-3 closest train sequences, along
with a histogram of l2 distances computed on our test set of ≈
500 generated sequences. In red, we mark the intra-trainset

distance between samples in the train set. We observe that
the distance between our generated sequences and the closest
train sequence is mostly larger than the intra-train distance.
Thus, our method is able to produce samples that are novel
and not simply retrieved train sequences.

C. Baseline Evaluation Setup

There is no previous approach to modeling 3D human-object
interactions from text and object geometry for direct com-
parison. Thus, we compare to the two closest methods, and
compare to them in multiple settings, for a fair comparison.

The most related approach is InterDiff [84]. Their setting
is to generate a short sequence of human-object interactions,
from an observed such sequence as condition, with geometry
but no text input. Their goal is to generate one, the most
likely, sequence continuing the observation. We use their
full approach, including the main diffusion training together
with the post-processing refinement step. We compare in two
different settings: First, in their native setup, running their
method unchanged and modifying ours to take in geometry
and past sequence observation instead of text (Motion-Cond.
HOI in Tab. 1 main). Then, we modify their approach to take
in geometry and text, replacing their past motion encoder
with our CLIP-based text encoder (Text-Cond. HOI in Tab. 1
main). We observe that our method is able to outperform
InterDiff in both scenarios, for both datasets.

We additionally compare to MDM [71], a recent diffusion-
based state-of-the-art human motion generation approach.
Their approach is based on a transformer encoder formu-
lation, using each human body as a token in the attention.
We run their method on SMPL parameters and first com-
pare in their native setting, only predicting human motion.
We compare to the human motion generated by our method
which is trained to generate full human-object interactions
(Text-Cond. Human Only in Tab. 1 main). We also com-
pare to human motion sequences generated by InterDiff in
this setting. We see that our method is able to outperform
both baselines even in this setting, demonstrating the added
benefit of learning interdependencies of human and object
motion. For the comparison in our setting, we modify MDM
by adding additional tokens for the objects to the attention
formulation. Our approach performs more realistic and di-
verse sequences in both settings which better follow the text
condition.

D. Fidelity and Diversity Metrics

We base our fidelity and diversity metrics R-Precision, FID
score, Diversity, and MultiModality on practices established
for human motion generation [24, 25, 71], with minor modi-
fications: We use the same networks used by these previous
approaches, and adapt the input dimensions to fit our feature
lengths, F = 79 when evaluating human body motion only,
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Figure 9. Additional qualitative evaluation. Our method produces diverse and realistic 3D human-object interaction sequences, given
object geometry and short text description of the action. The sequences depict high-quality human-object interactions by modeling contact,
mitigating floating and penetration artifacts.
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Figure 10. Human-Object Interaction Sequence Novelty Analysis. Performed on BEHAVE [8] (left) and CHAIRS [35] (right). We retrieve
top-3 most similar sequences from the train set, and plot a histogram of distances to the closest train sample. While sequences at the 20th
percentile still resemble the generated interactions, there is a large gap in the 80th percentile. We show the intra-trainset distance in red. Our
approach generates novel shapes, not simply retrieving memorized train samples.

and F = 79 + 128 + 9 = 216 (SMPL parameters, contact
distances, object transformations) for full evaluation in the
human-object interaction scenario.

E. Architecture Details

Fig. 11 shows our detailed network architecture, including
encoder, bottleneck, and decoder formulations.

F. Data Details

F.1. Datasets

CHAIRS [35] captures 46 subjects as their SMPL-X [53]
parameters using a mocap suit, in various settings interacting
with a total of 81 different types of chairs and sofas, from
office chairs over simple wooden chairs to more complex
models like suspended seating structures. Each captured
sequence consists of 6 actions and a given script; the ex-
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Figure 11. Network architecture specification.
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act separation into corresponding textual descriptions was
manually annotated by the authors of this paper. In total,
this yields ≈ 1300 sequences of human and object motion,
together with a textual description. Every object geometry
is provided as their canonical mesh; we additionally gener-
ate ground-truth contact and distance labels based on posed
human and object meshes per-frame for each sequence. We
use a random 80/10/10 split along object types, making sure
that test objects are not seen during training.

BEHAVE [8] captures 8 participants as their SMPL-H
[62] parameters captured in a multi-Kinect setup, along with
the per-frame transformations and canonical geometries of
20 different object with a wide range, including yoga mats
and tables. This yields ≈ 130 longer sequences. We use
their original train/test split.

F.2. Object Geometry Representation

We represent object geometry as a point cloud, to be pro-
cessed by a PointNet [56] encoder. For this, we sample
N = 256 points uniformly at random on the surface of an
object mesh. Each object category is sampled once as a pre-
processing step and kept same for training and inference.

17


	. Introduction
	. Related Work
	. Method Overview
	. Human-Object Interaction Diffusion
	. Probabilistic Denoising Diffusion
	. Human-Object-Contact Cross-Attention
	. Contact-Based Object Transform Weighting
	. Loss Formulation

	. Interaction Generation
	. Contact-Based Diffusion Guidance
	. Conditioning on Object Trajectory

	. Results
	. Experimental Setup
	. Evaluation Metrics
	. Comparison to Baselines
	. Ablation Studies
	. Applications
	. Limitations

	. Conclusion
	. Additional Qualitative Results
	. Additional Quantitative Results
	. Penetration metric
	. Novelty of Generated Interactions

	. Baseline Evaluation Setup
	. Fidelity and Diversity Metrics
	. Architecture Details
	. Data Details
	. Datasets
	. Object Geometry Representation


